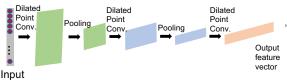
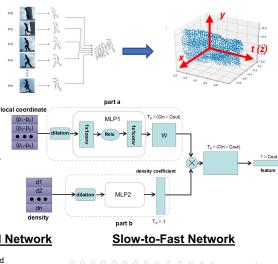

Dilated Silhouette Convolutional Neural Network for Human Action Recognition (#1314)

Problem

- Human action is a spatio-temporal motion sequence with strong inter-dependencies between spatial geometry and temporal dynamics
- Current recognition algorithms lack synergy in investigating space and time in a joint representation and embedding space
- Recognition suffers from view changes, camera motion, • background clutter, occlusion, anthropometry, and variation in action execution rate

Current geometry-based methods estimate the skeleton and use it for recognition. However, the skeletons are often inaccurate while the silhouettes are robust.


Framework

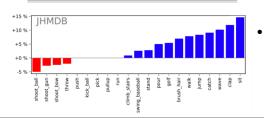

Novel stacked silhouette point representation for video action Modified Mask-RCNN extracts silhouettes from each frame of the video which are stacked along time to form a 3D point cloud.

Dilated Silhouette Point Convolutions

Performed in a local silhouette patch to obtain a feature output.

Dilated Silhouette Convolutional Neural Network

Methods HMDB HMDB UCF101 2D geometry-based methods P-CNN Chéron et al. (2015) 61.1 Action Tubes Gkioxari and Malik (2015) 62.5 57.0 43.7 65.2 PoTion Choutas et al. (2018) PA3D Yan et al. (2019) 69.5 55.3 DD-Net Zhang et al. (2019 77.2 77.8 82.1 69.6 SCN (Ours) pixel-based methods MR Two-Sream R-CNN Peng and Schmid (2016) 71.1 Attention Pooling Girdhar and Ramanan (2017) Res3D Tran et al. (2017) 52.2 54.9 85.8 59.4 88.0 Two-Stream Simonyan and Zi IDT Wang and Schmid (2013) Dynamic Image Networks Bilen et al. (2016) 86.4 89.1 61.7 65.2 C3D (3 nets) Tran et al. (2015)+IDT 90.4 93.5 - 66.2 LatticeLSTM Sun et al. (2017) Two-Stream Fusion Feichtenhofer et al. (2016)+IDT 93.5 94.2 69.2 • TSN Wang et al. (2016) 69.4 70.3 94.6 98.0 Spatio-Temporal ResNet Christoph and Pinz (2016)+IDT I3D Carreira and Zisserman (2017) 80.7 96.5 96.9 Spatiotemporal Fusion Zhou et al. (2020) 73.3 TEA Li et al. (2020) 2D geometry and pixel combined Chained (Pose+RGB+Flow) Zolfaghari et al. (2017)


69.7 91.1

82.1

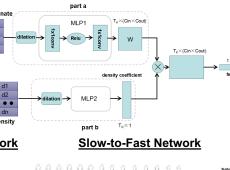
76.1

85.5 80.9 98.2

86.3 85.1 98.3

I3D+PoTion Choutas et al. (2018)

I3D+PA3D Yan et al. (2019)


I3D'+SCN (Ours)

Findings

- SCNN outperforms all geometry-based state-ofthe-art methods on the three benchmark datasets (JHMDB, HMDB, UCF 101)
- SCNN performs the best on small training datasets compared to all other methods
- SCNN, when integrated with I3D achieves the best accuracy out of all other methods

Conclusions

- SCNN uses the novel geometric representation of silhouettes stacked along the time axis to explore spatiotemporal dynamics.
- SCNN computes dilated silhouette convolutions yielding distinctive geometric features for accurate action recognition.
- SCNN outperforms similar state-of-the-art methods, and when combined with I3D, SCNN achieves the best performance.
- SCNN is implemented in my Coach AI app to increase the • accuracy and precision of complex action recognition and the feedback provided to users. I will also further develop my app to assist with physical therapy in the future.

